If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34x^2-160x=300
We move all terms to the left:
34x^2-160x-(300)=0
a = 34; b = -160; c = -300;
Δ = b2-4ac
Δ = -1602-4·34·(-300)
Δ = 66400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{66400}=\sqrt{400*166}=\sqrt{400}*\sqrt{166}=20\sqrt{166}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-20\sqrt{166}}{2*34}=\frac{160-20\sqrt{166}}{68} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+20\sqrt{166}}{2*34}=\frac{160+20\sqrt{166}}{68} $
| 5(c-14)=-20 | | v3=125 | | 5+3f=34 | | 4.5x+8=14 | | x/11-1=4 | | 49x^2+69x-28=0 | | 4m=5=2m-1 | | 4+6f=22 | | 2/3y=1/4y= | | 3v-29=7 | | 1404-50=12500+20x | | 4x+24x+2=7(4x+2) | | 2/3y=1/4. | | 6-2/3x+3=3+1/3x-1 | | 3y–7=2y+2 | | z/5+5=-46 | | 3/2r+1/10=3/5 | | 2x2+3x–4=0 | | 9y–2=7y+4 | | 4s+1=8 | | k/3+6=23 | | 12p+17+8p+12= | | 13(1-z)+9z=-3 | | d2–9≥=7 | | 110=x+122 | | d2–9≥–=7 | | 9x+8=10x-1 | | d2–9=–7 | | 9x-(2)=9x+6 | | 4x+(90-x)=(180-x)+10 | | (8)(5)=b | | --x=x-4x |